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Abstract. Blockchain technology has recently gained widespread popularity as a practical
method of storing immutable data while preserving the privacy of users by anonymizing
their real identities. This anonymization approach, however, significantly complicates the
analysis of blockchain data. To address this problem, heuristic-based clustering algorithms as
an effective way of linking all addresses controlled by the same entity have been presented
in the literature. In this paper, considering the particular features of the Extended Unspent
Transaction Outputs accounting model introduced by the Cardano blockchain, two new
clustering heuristics are proposed for clustering the Cardano payment addresses. Applying
these heuristics and employing the UnionFind algorithm, we efficiently cluster all the addresses
that have appeared on the Cardano blockchain from September 2017 to January 2023, where
each cluster represents a distinct unique entity. The results show that each medium-sized entity
in the Cardano network owns and controls 9.67 payment addresses on average. The results
also confirm that a power law distribution is fitted to the distribution of entity sizes recognized
using our proposed heuristics.
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1. Introduction

Blockchain technology has attracted much attention in recent years as a revolutionary way
of immutable data storage that has enabled a new generation of financial exchange platforms.
In contrast to traditional banking systems, blockchain technology proposes a promising decen-
tralized method enabling users to transfer value/assets to other users without the need for the
presence of any centralized trusted third party to act as an intermediary in the network. In a
blockchain network, each node is connected to and exchanges data with an arbitrary number of
desired nodes, forming a peer-to-peer network. The main purpose of this decentralized network
is to reach an agreement on a unique ledger, which is an ordered chain of transactional data. The
key idea is that there is no central authority in a blockchain-based network. The transactions are
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generated by the network users and sent to the peers. The peers validate the transactions, put
them together in blocks, store the blocks in their local ledger, and propagate the blocks to other
peers. In this way, the transactions are broadcasted throughout the whole network, ensuring that
a common record of transactions is shared among all peers.

The basic decentralized consensus protocol introduced by Satoshi Nakamoto in 2008 was
called Proof of Work (PoW).2 In PoW, each peer needs to complete a computationally heavy task
before it can publish a block of transactions. The first peer that completes this task and publishes
the block will be awarded according to the protocol. In fact, finding the appropriate parameters
for a block is a time- and computation-intense task certifying some intensive work has been done
by the peer, hence the name "Proof of Work". However, this heavy computation is used only
to prove that some "work" is done, while the "work" itself is in some respects useless—at least
avoidable—in the protocol. Thus, this "work" can be regarded as an inefficient utilization of time
and energy. To address this problem, alternative consensus protocols have been introduced after
PoW. One of the alternative protocols is called Proof of Stake (PoS).23 In PoS, only stake owners,
or users who have a certain amount of cryptocurrency in their possession, are in authority to
validate new blocks. The next block validator is selected randomly with a higher probability of
selecting a stake owner with a larger stake. This setting means that the selected validator does
not need to perform heavy computations, but only validates the block’s transactions.

Blockchains are supposed to determine the provenance and ownership of assets in the network.
To this end, the existing blockchains use two different accounting models.25 The first model is
called Unspent Transaction Output (UTXO)-based model, which is similar to traditional cash
trading. In this model, each transaction spends a finite number of inputs and generates some
outputs with fixed values, where the inputs are unspent outputs of previous transactions, and the
total amount of inputs must exceed the total amount of outputs. UTXOs are indeed transaction
outputs that have not been spent yet. Each output is locked by a specific public address, which
identifies a particular entity in the network allowed to spend it. Since the value of each UTXO is
determined in the transaction generating it, a UTXO owner who intends to spend it cannot divide
it but instead must spend the entire amount and receive a change value in return. Bitcoin,2 which
is a cryptocurrency with the largest market capacity,46 exemplifies this UTXO-based accounting
model. The second model is called the account-based model, which is closely similar to the
banking system; where each user owns one or more accounts, and the transactions represent
a transfer of an arbitrary amount of value from one account to another. In this setting, the
blockchain can be considered as a state machine that records the current balances of all accounts,
where each transaction changes the state of the blockchain by updating the balances: subtracting
the input value from the sender’s account and adding the output value to the receiver’s account.
Account-based model is exemplified by Ethereum,20 which is the second-largest cryptocurrency
in the world.46 Ethereum is also the first blockchain platform that presented the concept of smart
contracts.

In contrast to the banking system, the details of all transactions are publicly available in public
blockchains, which can threaten the privacy of users. For this reason, in many UTXO-based
blockchains (e.g., Cardano, Bitcoin, Litecoin, and Monacoin), each user/entity has been enabled
to generate and control an arbitrary number of anonymous addresses. Furthermore, many crypto
wallets (e.g., Daedalus, Yoroi, and Coinbase), by default, generate new change addresses for the
users/entities after each transaction. Accordingly, it is reasonable for data analysts to assume that
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some blockchain users/entities are expected to own multiple addresses.

Fig. 1. Example scenario 1: value transfer among different addresses of the same entity

Considering that it is necessary for many financial analyses—for example, wealth distribution
or asset velocity—to take into account the transactions between distinct entities rather than
distinct addresses, address clustering would be the first step to conducting a statistical analysis
on a UTXO-based blockchain in many cases. In other words, to analyze the network parameters
of a UTXO-based blockchain, data analysts cannot treat each address as if it belongs to a distinct
entity; instead, they need to cluster all addresses controlled by the same entity together and then
perform their analyses based on those clusters.

Fig. 2. Example scenario 2: Value transfer from different addresses of the same entity

Here are two scenarios that can provide insight into the significance of address clustering.
As the first instance, when a certain amount of value is transferred from Address1 to Address2
through a transaction, while both addresses belong to the same entity, neither the distribution
of wealth nor the velocity of assets must be affected in analyses by that part of the transaction
because it represents no value transfer in the real world. Whereas without knowing that these
addresses represent the same entity, the results of such analyses would not be accurate. As shown
in Fig. 1, the transaction transfers 3 ADA in the network, while the real amount of transferred
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value among users is only 1 ADA. Another example would be when two UTXOs stored in two
distinct addresses belonging to a single entity are spent. In this case, the corresponding impact
on analyses must be completely different from the case when two similar UTXOs owned by two
separate entities are consumed. Fig. 2 and Fig. 3 illustrate the difference between these two cases.

Fig. 3. Example scenario 2: Value transfer from different addresses of different entities

As can be conceived by the scenarios above, capturing a reliable address clustering has a key
role to play in UTXO-based blockchain analytics. The effective heuristics for address clustering
in UTXO-based blockchains have been discussed in a number of previous studies.1, 5–11, 15

However, since Cardano has extended the UTXO-based accounting model by introducing the
Extended Unspent Transaction Output (EUTXO)-based model24 to support smart contracts, the
already-existing heuristics developed for other blockchains are not directly applicable to Cardano.
In this paper, we focus on Cardano address clustering and propose two heuristics for the EUTXO
model. We apply our heuristics to the Cardano blockchain data to create clusters of addresses,
with each cluster representing an entity controlling all addresses within the cluster.

In the following, a brief explanation of the basic concepts and preliminaries of the Cardano
blockchain is presented in Section 2. Afterward, an overview of the literature is provided in
Section 3 by referring to relevant work proposed in the blockchain address clustering area.
The approach followed in this work for address clustering is presented in Section 4. The
implementation methods, as well as the analytics results, are discussed in Section 5. Finally,
Section 6 presents the conclusions.

2. Background and Preliminaries

2.1. Cardano Consensus Protocol—Cardano consensus protocol, Ouroboros, is designed
based on Proof of Stake.22 Each user holding a stake in Cardano can earn passive rewards by
participating in the block validation process. This participation can be achieved by either 1)
establishing a new stake pool and pledging/delegating stake to this pool or 2) delegating stake to
an already-existing pool. In order to delegate their stakes to a pool, users must first register a stake
address, and then obtain a delegation certificate for that address. A stake pool typically consists
of three components: 1) one stake pool operator (SPO), 2) one/multiple stake pool owners, and
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3) one/multiple stake delegators. In the Cardano protocol, time is divided into epochs that last
432,000 slots, each lasting one second. In every time slot, one of the online registered pools is
randomly chosen by the protocol to act as the slot leader, the pool eligible to produce the next
block. Later on, validation rewards are calculated proportional to the amount of stakes pledged
or delegated to the pool and are distributed by the protocol among the pool components. More
specifically, to become redeemable and consumable, these rewards must be first withdrawn via
transactions that convert them into spendable UTXOs.

2.2. Cardano Accounting Model—Cardano basically falls in the category of UTXO-based
blockchains. Cardano’s native cryptocurrency is called ADA. Having said that, Cardano has
introduced the EUTXO-based model, which extends the UTXO-based model to support smart
contracts. A smart contract is a low-level code script that runs synchronously on multiple
blockchain nodes.3 In contrast to Bitcoin which does not support complex smart contracts but
only simple scripts, Cardano’s native programming language for smart contracts, Plutus, is a
Turing-complete language written in Haskell and is capable of implementing any logic.26 In
Cardano’s EUTXO model, each UTXO is locked by a payment address, which refers to 1) a
payment key, 2) a simple script (e.g., multi-signature script), or 3) a Plutus smart contract.27–29

A crucial point to note here is that the scripts and smart contracts can maintain assets in their
own addresses, and these assets can be spent if and only if the conditions pre-defined in the
script/contract are satisfied by the spending transaction.

2.3. Cardano Address Types—Highlighting the features relevant to our clustering method,
Cardano addresses can be categorized into two major categories as follows.21

• Payment Addresses: Only this type of address can own/spend a UTXO. A payment address
can be either a Shelley address or a Byron address.

– Shelley: A Shelley address has two main parts.

* payment part: This part refers to 1) a payment key, 2) a simple script, or 3) a Plutus
smart contract that owns funds stored in the Shelley address.

* delegation part: This part may refer to a stake address that owns stake rights of funds
stored in the Shelley address.

– Byron: This is an old address format kept in the protocol only for backward compatibility.
• Stake Addresses: A stake address owns/controls staking rewards and refers to a stake key.

3. Related Work

There are different blockchain address clustering methods,1, 31 such as heuristic-based,7–16

off-chain information-based,32–34 and behavior-based methods,35, 36 the last of which includes
data mining-based37–41 and deep learning-based methods.42–44 This section, however, describes
only a number of heuristic-based studies that focus on UTXO-based blockchain address clustering
and are more relevant to our work. Apart from these studies, several heuristics have also been
explored for clustering and de-anonymizing the addresses in account-based blockchains such as
Ethereum17, 18 and Ripple,19 which are out of the scope of this paper.

First of all, Nakamoto hinted at the possibility that multiple input addresses of a transaction
may be associated with the same person or entity.2 Based on this assumption, Reid and Harrigan7
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later proposed the multi-input heuristic method as an effective identity detection method. In their
paper, they also talked about the detection of change addresses as another heuristic; where the
change address in a transaction indicates an output address that belongs to the sender and receives
excess input. As part of their study, Androulaki et al.8 analyzed Bitcoin’s privacy provisions by
applying multi-input and change address heuristics to recognize entities in the network. Their
assumption was that new change addresses were used to receive transactions’ changes. According
to their findings, even when the users used new addresses for each transaction, almost 40% of
them were still identifiable. Meiklejohn et al.,9 assuming that change addresses only have one
input, broadened the change heuristic to include transactions with three or more outputs. Ortega
et al.10 proposed a new change address heuristic by choosing the output address whose value had
more decimals to be the change address. Their change address heuristic was indeed based on the
assumption that real outputs usually have reduced decimals. Nick11 selected the output address
whose value was smaller than all inputs of a transaction as the optimal change address. In that
study, it was assumed that crypto wallets typically do not spend unnecessary UTXOs.

Zhang et al.12 modified the one-time change address heuristic by discarding the change
addresses that were reused as non-change addresses after the change address was made. On
the basis of multi-conditional recognition, Liu et al.13 developed a one-time change address
identification algorithm to cluster the Bitcoin addresses. In comparison to other heuristics,
they found that their method can reliably detect almost 12% more one-time change addresses.
He et al.14 improved the change address heuristic and proposed a new heuristic based on the
different number of output address transactions. They used six heuristics, including multi-input
and change address heuristics, to recognize entities by address clustering. They also added
conditional constraints to enhance the accuracy of the identified change addresses and hasten the
algorithm’s convergence.

Combining the heuristics implemented in the BlockSci45 C++ library, Campajola et al.15

developed their own heuristic-based address clustering algorithms, most of which relied on the
detection of change addresses in transactions. In their study, they employed logical combinations
of five heuristics, such as multi-input and change address heuristics, in order to minimize the
number of false positives. Adapting from these five heuristics, Rafati Niya et al.30 for the first
time, performed an address clustering to identify the addresses belonging to the same wallet in
the Cardano blockchain. They also conducted an analysis of stake balance distribution, reward
distribution, and wealth concentration in the Cardano blockchain.

However, according to our knowledge, none of the above-mentioned heuristics has yet been
customized in the literature in order to fit the specific features of the EUTXO model used in the
Cardano blockchain.

4. Approach

In this work, we study address clustering in the Cardano blockchain by applying a heuristic-
based approach. Inspired by the heuristics that have already been developed for UTXO-based
blockchains, two heuristics derived from the specific features of the EUTXO model are proposed
in the following. The first heuristic is a modified version of the multi-input heuristic,7 which
is used for other UTXO-based blockchains like Bitcoin as outlined in Section 3. The second
heuristic, however, is inspired by the staking and delegation mechanisms inherent in the Cardano
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consensus protocol and is unique to this protocol.
• Heuristic 1 (modified multi-input heuristic): All Byron payment addresses, and also

all Shelley payment addresses with a payment part referring to a payment key, appearing
in the inputs list of a single transaction are assumed to belong to the same entity. This
assumption stems from the fact that regular Cardano wallets, such as Daedalus, Yoroi, and
Coinbase, support only generating transactions that spend UTXOs from wallets controlled
by a single user. Particularly, note that Shelley payment addresses whose payment part
refers to a simple script or a smart contract are excluded from this heuristic. This is
because, when generating a valid transaction, there is no restriction on the selection of
input scripts/contracts, i.e., entities can choose any previously created script/contract they
wish as input—provided that the conditions specified in the script/contract are fulfilled by
the transaction. It should also be noted that this heuristic is different from the multi-input
heuristic,7 which was proposed for address clustering in Bitcoin and considered all input
addresses of a transaction to be owned by the same entity.

• Heuristic 2 (staking heuristic): All Shelley payment addresses whose delegation part
refers to the same stake key are assumed to belong to the same entity. This assumption
arises from the fact that the entity holding the private key associated with a stake key can
unconditionally withdraw the staking rewards stored in the corresponding stake address
and send them to any desired payment address. Accordingly, in a normal situation and in
the absence of high levels of off-chain trust, it is quite unlikely for one entity to transfer
its stake rights to another.

Previous studies have also discussed a few other address clustering heuristics for UTXO-
based blockchains, including "optimal change", "new address creation", "address reuse", and
"peeling chain" heuristics.1, 8–15 Although these heuristics might be applicable to the Cardano
blockchain as well, this paper focuses exclusively on the new heuristics above that are tailored
specifically for Cardano.

5. Implementation and Results

In this section, we present the procedure and results of applying the heuristics proposed in
Section 4 to all the Cardano transactions from September 2017 to January 2023 in order to obtain
the clustering result of all addresses that have appeared as inputs or outputs of transactions during
this period of time.

5.1. Dataset, Hardware, and Algorithm—To cluster the Cardano addresses, first, a Cardano
node was set up, which consists of a component called Cardano DBsync. DBSync is the
Cardano node’s default indexer that collects and stores on-chain data in a PostgreSQL database.47

After setting the node up, through joining three tables from the database—i.e., tx, tx_out, and
tx_in—blockchain’s historical transactions data was extracted and stored for further processing.
Afterward, using PySpark library version 3.3.1, a Python script loaded this data into memory,
allowing the inputs and outputs to be analyzed efficiently in accordance with the heuristics. The
Python script was run on a Debian 11 machine with 64 AMD EPYC 3.40 GHz CPU cores and
512 GB memory. For further improvement of efficiency, the Union-Find algorithm4 was adopted
to link the payment addresses during the clustering process.
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5.2. Clustering Results—Through the history of Cardano until January 2023, the total
number of unique payment addresses recorded on the blockchain as owners of UTXOs reaches
40,330,345, including 29,047,961 Shelley addresses and 11,282,384 Byron addresses. As well,
the total number of stake addresses that have appeared on the blockchain as the delegation part of
Shelley addresses is 3,868,049, of which 1,665,652 have been registered. This data is summarized
in Table 1. The number of new addresses that have appeared on the blockchain over time is
shown in Fig. 4.

Table 1. Cardano Address Types

Total Payment Addresses 40,330,345

Shelley Addresses 29,047,961

Byron Addresses 11,282,384

Total Stake Addresses 3,868,049

Registered Stake Addresses 1,665,652
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Fig. 4. Number of new addresses appeared on the blockchain per day

We applied Heuristic 1 to the payment addresses, which resulted in 19,249,106 distinct
clusters. Fig. 5 illustrates the distribution of addresses in each cluster.
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Fig. 5. Distribution of addresses per entities (clusters) determined by Heuristic 1

This clustering indicates that the average number of members (addresses) per cluster is 4.94,
excluding 16,310,058 single-member clusters and 349 large clusters that contain more than 1000
members. More notably, there are 9 superclusters with more than 200,000 members. Likewise,
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applying Heuristic 2, 1,292,933 non-single-member clusters were detected. The distribution of
cluster members according to this analysis is shown in Fig. 6. In this case, after excluding 528
large clusters with at least 1000 members, non-single-member clusters have an average size of
14.63.
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Fig. 6. Distribution of addresses per entities (clusters) determined by Heuristic 2

In the subsequent step, the clusters obtained by using the two heuristics were merged,
providing a more comprehensive address clustering that is illustrated in Fig. 7. A summary of
clustering results derived from Heuristic 1 and Heuristic 2 is presented in Table 2. In particular,
the average size of medium-sized entities, that is, clusters with between 2 and 1000 members, is
9.67.

Our results show that a power law distribution can be fitted to the distribution of entity sizes
recognized using Heuristic 1 and Heuristic 2. A power law probability distribution is in the
form of p(x) ∝ x−α . The dashed lines in Fig. 5, Fig. 6, and Fig. 7 represent a fitted power law
distribution obtained by the powerlaw Python package.48 The power law distributions have been
generated with a fitted parameter α and standard error σ for values equal to or more than xmin.
It is worth mentioning that combining both heuristics yields a more power-law-like distribution
with a smaller standard error and smaller xmin.
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Fig. 7. Distribution of addresses per entities (clusters) determined by Heuristic 1 and Heuristic 2
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Table 2. Summary of Clustering Results

Clustering Heur1 Heur2 Heur1 and
Result Heur2

total # of clusters 19,249,106 18,529,342 8,805,791

average size of clustersa 4.94 14.63 9.67

single-member clusters 16,310,058 17,236,409 6,621,701

large clustersb 349 528 603

superclustersc 9 3 12
aexcluding large and single-member clusters
bclusters with more than 1000 members cclusters with more than 200,000 members
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Fig. 8. Number of new payment addresses and new entities (clusters) determined by Heuristic 1 and
Heuristic 2 appeared on the blockchain per day

Based on this clustering, the number of new entities that have joined the blockchain network
over time is calculated and compared with the number of new addresses, the result of which is
shown in Fig. 8.

In Fig. 9, the number of active payment addresses per day as well as the number of active
entities per day are illustrated. In this figure, if a payment address has appeared in the inputs list
of at least one transaction on a given day, that address and consequently its corresponding entity
have been considered active.

Finally, based on the address clusters indicating the entities in the network, we calculated the
distribution of non-fungible tokens (NFTs) and fungible tokens (FTs) minted by each entity, the
results of which are presented in Fig. 10 and Fig. 11. According to this analysis, 602,656 entities
out of a total of 8,805,791 entities have contributed to NFT minting in the Cardano network. This
number equals 22,872 for the entities that have participated in the generation of FTs.

5.3. Discussion and Limitation—Although the proposed heuristics generally produce
accurate results, they may also produce false positive links: assuming that two addresses are
connected together, or owned by the same entity, while in reality, they are not. For instance,
considering Heuristic 1, we have assumed that all UTXOs locked by payment keys listed as
inputs of a single transaction are owned by the entity that has generated and signed the transaction
via their crypto wallet. However, there are some tools, such as "cardano-cli," that are capable of
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Fig. 9. Number of active addresses and active entities (clusters) determined by Heuristic 1 and Heuristic
2 per day
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Fig. 10. Distribution of NFTs minted by entities (clusters) determined by Heuristic 1 and Heuristic 2
and contributed to NFT minting

generating complex transactions that carry the signatures of multiple users. The input list of such
transactions can contain payment keys from different users. Consequently, these transactions may
insert false positives into our clustering outputs. Such false positives are probably responsible
for the creation of the superclusters. As with Heuristic 1, Heuristic 2 may also lead to false
positives. Indeed, it is technically possible for users to store their assets in Franken addresses,
which are Shelley addresses whose delegation part refers to another user’s stake address. By
doing so, the users can pledge additional stakes to a pool without having to register an additional
pool owner on the blockchain, although this requires off-chain trust between the two parties.

In order to improve the accuracy of the proposed address clustering algorithm, these false
positive links should be detected and subsequently removed from the output of the algorithm in
future work.

6. Conclusion

Cardano has extended the UTXO-based accounting model by introducing the EUTXO model
to support smart contracts. Because of this extension, the already-existing heuristics developed
for address clustering in other UTXO-based blockchains are not directly applicable to Cardano.
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Fig. 11. Distribution of FTs minted by entities (clusters) determined by Heuristic 1 and Heuristic 2 and
contributed to FT minting

In this paper, we proposed and implemented two new heuristics based on the specific features of
Cardano. We also presented the clustering results of Cardano addresses based on the proposed
heuristics. The results of this paper can be used as a basis for further blockchain analysis
in Cardano concerning wealth distribution and asset velocity. The results show that a power
law distribution can be fitted to the distribution of entity sizes recognized using our proposed
heuristics. Nevertheless, the proposed heuristics result in the formation of a few superclusters,
indicating that the final clustering results still contain false positives. In future work, it would
be advantageous to improve the accuracy of this heuristic-based address clustering method by
detecting and eliminating false positives.
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